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Abstract

Behavior cloning methods for robot learning suffer from poor
generalization due to limited data support beyond expert
demonstrations. While recent approaches leverage video
prediction models to implicitly capture dynamics, they lack
explicit action conditioning, leading to averaged predictions
over actions that lose critical dynamics information. We
propose a Dynamics-Aligned Flow Matching Policy that in-
tegrates dynamics predictions into policy learning through
iterative flow generation. Our method introduces a novel
architecture where policy and dynamics models share in-
termediate generation samples during training, enabling
self-correction and improved generalization. Theoretical
analysis demonstrates that conditioning on predicted dynam-
ics leads to improved approximation to optimal actions, with
empirical validation on Robomimic benchmarks.

1. Introduction

Behavior cloning (BC) has proven effective for learning
robotic manipulation policies using diffusion models [8], yet
it faces fundamental limitations in generalization beyond
training scenarios. The core challenge lies in the distribution
mismatch between expert demonstrations and real-world
deployment environments. While diffusion-based policies [9,
26] have shown promising results, they remain susceptible to
overfitting when trained solely on expert data due to limited
data support outside the optimal trajectory distribution.

Recent works [3, 7, 10, 13, 14, 24, 25] attempt to
address this by incorporating video prediction models
to implicitly capture environmental dynamics. How-
ever, these approaches predict future observations with-
out action conditioning, essentially modeling p(ot+1|ot) =∫
p(ot+1|ot, at)π∗(at|ot)dat. This averaging over different

action outcomes loses critical dynamics information. More-
over, video prediction models trained exclusively on expert
demonstrations tend to overfit to the limited trajectory distri-
bution, leading to poor performance on out-of-distribution
(OOD) data where the visual patterns deviate from those
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seen during training. Extended analysis of dynamics and
video prediction models are given in Appendix B.

We argue that explicit dynamics modeling through
p(ot+1|ot, at) is essential for robust policy learning. A key
advantage of this approach is that dynamics learning can
benefit from diverse trajectory data, including random explo-
rations that require zero human annotation cost. Unlike video
prediction, which requires consistent visual patterns from
expert demonstrations, dynamics models can learn from
any state-action-state transitions, enabling them to capture
the true environmental physics across a broader state-action
space. However, directly incorporating explicit dynamics
into policy learning poses challenges: (1) how to leverage
dynamics information during action generation, and (2) how
to train dynamics and policy models effectively.

To address these challenges, we propose a Dynamics-
Aligned Flow Matching Policy that integrates dynamics
predictions into policy learning through iterative flow gen-
eration. Our key insight is that during flow generation, in-
termediate samples from dynamics and policy models can
provide mutual correction to each other, leading to more
accurate and generalizable policies.

Our contributions are: (1) A novel flow matching archi-
tecture that shares intermediate generated flow samples be-
tween policy and dynamics models, enabling self-correction
through dynamics-predicted future observations; (2) Theo-
retical analysis showing improved approximation properties
when the policy receives information about predicted next
observations;

2. Methodology

Our approach consists of two key innovations: (1) explicit dy-
namics modeling using flow matching, and (2) iterative cou-
pling between dynamics and policy generation. We present
our architectural design in Section 2.2.

2.1. Notation

Let x(τ)
t be a CNF of x at trajectories timestep t and flow

matching timestep τ . Defining the forward process as
straight paths between the data distribution p(x

(1)
t ) and a
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Figure 1. (Left) Data support comparison in observation-action space O×A. Expert demonstrations (orange) provide limited support in the
state-action space, while incorporating random trajectory data (green) significantly expands the support region, enabling better generalization
beyond expert trajectories. (Right) Our iterative flow generation process. The dynamics model learns p(ot+1|ot, at) from both expert
and random data, while the policy model learns with future observations conditioning. During inference, intermediate flow samples from
dynamics and policy models provide mutual correction through iterative generation, where o

(τ)
t+1 and a

(τ)
t are refined at each timestep. This

dynamics-aligned approach enables self-correction and improved robustness compared to standard behavior cloning methods.

Algorithm 1 Sampling

1: Given o
(1)
t , set δτ = 1/num_steps

2: Sample a
(0)
t ∼ N (0, I), o

(0)
t+1 ∼ N (0, I)

3: for i in 1, . . . , num_steps− 1 do
4: τ = i · δτ
5: a

(τ+δτ)
t = a

(τ)
t + δτ · gϕ(a(τ)t , τ |o(1)t , o

(τ→1)
t+1 )

6: o
(τ+δτ)
t+1 = o

(τ)
t+1+ δτ ·fθ(o(τ)t+1, τ |o

(1)
t , a

(τ++δτ→1)
t )

7: end for
8: return o

(1)
t+1, a

(1)
t

standard normal distribution N (0, I).

x
(τ)
t = (1− τ)ϵ+ τx

(1)
t (1)

for noise ϵ ∼ N (0, I) and the data point x(1)
t ∼ p(x

(1)
t ).

Also, given x
(τ)
t , we define x(τ→1)

t as transformation of x(τ)
t

to x
(1)
t regime.

LetDexpert = {(o(1)t,i , a
(1)
t,i , o

(1)
t+1,i)}Ni=1 denote our training

dataset of expert demonstrations. Note that the superscript
denotes the flow matching timestep, while the subscripts
denote the timestep of trajectories and index of demonstra-
tion, respectively. We assume access to additional random
trajectory data Drandom collected using a random policy.

2.2. Dynamics-Aligned Flow Matching Policy
Iterative Generation Necessity. Our approach requires it-
erative generation due to the inherent dependency between
dynamics and policy models. The dynamics model fθ learns
(ot, at)→ ot+1, requiring both current observation and ac-

tion as inputs. Conversely, the policy model gϕ benefits from
seeing the consequences of its predicted actions, necessitat-
ing predicted next observations. This mutual dependency
makes simultaneous generation infeasible, motivating an iter-
ative approach where dynamics and policy models alternate
in providing feedback to each other.

Architecture Overview. Our architecture consists of two
models: a dynamics model fθ and a policy model gϕ. During
training, we first learn the dynamics model on both expert
demonstrations Dexpert and random policy rollouts Drandom
to improve generalization. The policy is then trained with
dynamics-predicted future observations as additional condi-
tioning. Full algorithmic details are provided in Appendix
C.

3. Experimental Results

Success Rate
Flow Matching Policy 0.92/0.82

Ours 0.92/0.85

Table 1. Success rate of manipulation task of Robomimic
square-mh on 22 distinct initial states. Each figure corresponds
to the (maximum performance)/(average of last 5 checkpoints).

We empirically evaluate our method on the Robomimic
square-mh benchmark as an initial validation of our ap-
proach. These preliminary experiments, conducted without
extensive hyperparameter tuning, demonstrate the feasibility
of dynamics-aligned flow matching. Table 1 reports the task
success rates.
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Appendix

A. Extened Related Works

Diffusion Models for Policy Learning. Diffusion Policy [8]
pioneered the use of diffusion models for robotic control,
demonstrating superior performance in high-dimensional ac-
tion spaces. Follow-up works [9, 26] extended this to larger
scales and multi-modal inputs using Diffusion Transformer
(DiT) [20]. However, these approaches rely purely on be-
havioral cloning without explicit dynamics modeling. More
recently, π0 [4] and RFMP [5] have adopted flow match-
ing models for robotic policy learning, showing improved
training efficiency and inference speed while maintaining
comparable performance to diffusion-based approaches.

Video Prediction for Robotics. Video-based approaches
for robot learning leverage the success of large-scale video
prediction models [6, 19, 21] to learn implicit dynamics
representations. GR-2 [7], VPDD [13], SuSIE [3], and
iVideoGPT [25] use pre-trained video diffusion models for
policy learning. Specifically, UniPi [10] generates next ob-
servations to train policies in an inverse dynamics operator
manner, while VPP [14] and VidMan [24] leverage learned
representations from video prediction models for policy train-
ing. Despite their success, these methods fundamentally
learn p(ot+1|ot) without explicit action conditioning, poten-
tially missing fine-grained dynamics details. Inspired by us-
ing random data [15] and randomness in RL [2, 16] for gener-
alization, we explicitly train dynamics model p(ot+1|ot, at)
with random and expert data.

Model-Based Methods. Traditional model-based
RL learns explicit dynamics models for planning and
imagination-based policy improvement. Recent works like
DreamerV3 [12], IRIS [18], and DIAMOND [1] demon-
strate strong performance through learned world models.
However, these approaches often focus on imagination-based
policy learning rather than direct integration of dynamics
information into action generation.

UVA [17] and HMA [23] explore learning explicit dynam-
ics in multimodal settings and diverse training modes, bridg-
ing large-scale video understanding with dynamics modeling.
While these methods jointly train action and observation pre-
diction heads within a unified architecture, they maintain
separate generation pathways during inference. In contrast,
our approach introduces iterative flow sharing during the
generation process itself, where intermediate samples from
dynamics and policy models provide mutual correction to
each other at each timestep. This fundamental difference
enables self-correction based on predicted dynamics rather
than relying on independently trained prediction heads.
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Figure 2. Comparison of PSNR curves (top) and qualitative results
(bottom) for autoregressive image generation from the same initial
frame. The qualitative results show ground truth, generated samples
using dynamics, and video model outputs, arranged vertically.

B. Comparison of dynamics model and video
prediction model

To compare our dynamics model against a pure video-
prediction baseline, we trained both architectures under iden-
tical settings on the Robomimic square-mh dataset, dif-
fering only in whether the action embedding is provided as
an input. For evaluation, we collected a held-out test set by
rolling out a random policy in the NutAssemblySquare
environment using random seeds distinct from those used
in training dataset. Each model was then tasked with itera-
tively predicting the next observation, using its own previous
prediction as input at each time step. Figure 2 summarizes
this comparison, reporting PSNR curves alongside sample
rollouts for both the dynamics and video-prediction models.

Figure 2 plots the PSNR of the two models’ autoregres-
sive rollouts and reveals that the dynamics model achieves
consistently higher PSNR than the video-prediction base-
line—indeed, the gap is visually substantial. This quanti-
tative gap indicates that conditioning on both the current
observation and the action embedding renders the dynamics
model markedly more robust for multi-step future prediction.

Figure 2 shows example rollouts from each model.
The video-prediction model—being purely image-



Algorithm 2 Training

Input: expert demo Dexpert, random demo Drandom
1: while not converged do ▷ Train dynamics model
2: Sample (o

(1)
t , a

(1)
t , o

(1)
t+1) ∼ Dexpert ∪ Drandom

3: Sample ϵo ∼ N (0, I), ϵa ∼ N (0, I)
4: Calculate Ldyn(θ) using Equation 2
5: θ ← θ − γ1∇θLdyn(θ)
6: end while
7: while not converged do ▷ Train policy model
8: Sample (o

(1)
t , a

(1)
t , o

(1)
t+1) ∼ Dexpert

9: Sample ϵo ∼ N (0, I), ϵa ∼ N (0, I)
10: Calculate Lπ(ϕ) using Equation 3
11: ϕ← ϕ− γ2∇ϕLπ(ϕ)
12: end while

conditioned—goes down the irrelevant trajectory. This is
because small reconstruction errors compound at every step,
and before long the model generates frames that have little
to do with ground truth. By contrast, our dynamics model
is action-conditioned at each timestep, which anchors its
predictions to the actual control inputs. The action signal
keeps the rollout aligned with the ground-truth trajectory,
preventing the runaway “drift” seen in the video-only
baseline. The consistently better PSNR performance
of the dynamics model indicates that explicit dynamics
modeling requires architectural inductive biases beyond a
simple sequence extension, supporting our motivation for a
dedicated dynamics prediction module.

C. Implementation Details
C.1. Training Objective
We first train the dynamics model with the following objec-
tive: given ϵo ∼ N (0, I), τo ∼ p(τo), (o

(1)
t , a

(1)
t , o

(1)
t+1) ∼

D = Dexpert ∪Drandom,

Ldyn(θ) = ∥uo − fθ(o
(τo)
t+1 , τo|o

(1)
t , a

(1)
t )∥2 (2)

where uo = o
(1)
t+1 − ϵo, o(τo)t+1 = τoo

(1)
t+1 + (1− τo)ϵo

Then, with the dynamics model frozen, we train the policy
with: given ϵa ∼ N (0, I), τa ∼ p(τa), (o

(1)
t , a

(1)
t , o

(1)
t+1) ∼

Dexpert,

Lπ(ϕ) = ∥ua − gϕ(a
(τa)
t , τa|o(1)t , o

(1)
t+1)∥2 (3)

where ua = a
(1)
t − ϵa, a(τa)t = τaa

(1)
t + (1− τa)ϵa

C.2. Training Details
As mentioned before, we used flow matching to train policy
and dynamics model. We sampled the timestep τ from
β(1.5, 1) for policy, while LogitNormal(0.0, 1.0) is used for
dynamics. We chose these distributions referring to prior

works [4, 11]. Table 2 and 3 show the training details for both
models. For training and sampling, we used the algorithms
2, 1.

C.3. Model Architecture
This section discusses the detailed model architectures. For
dynamics model, we used DiT. DiT has shown scalability
and strong performance in diffusion-based generative mod-
eling. Also, for latent diffusion, we used VAE trained by
[22]. In addition, we embedded the low dimension action
with 2 layer MLP with GeLU activation. For policy model,
we used U-Net architecture. To inject the observation in-
formation to the network, we used cross-attention layer in
between residual blocks of U-Net. The overall architecture
resembles to the U-Net used by [22]. We used ResNet18 for
vision feature extractor of policy from scratch and trained
with the policy as reported by [8]. The Table 2 and 3 show
the hyperparameters of both policy and dynamics models.

# of residual blocks for each layers 2
Dimension of Head 32
Transformer Depth 1
Channel Multipliers 1, 2, 4
Attention Resolution 1, 2, 4

Channels 224
Model Parameters 217M

Flow matching
timestep distribution β(1.5, 1)

Learning rate 1e-4
Batch size 128

Epoch 200

Table 2. Hyperparameters for policy architecture(up) and train-
ing(down)

Path size 2
Hidden dimension 1152

Depth 28
Action Embedding

Dimension 64

MLP ratio 4.0
Model Parameters 674M

Flow matching
timestep distribution LogitNormal(0.0, 1.0)

Learning rate 1e-4
Batch size 128
Precision torch.FP16

Epoch 70

Table 3. Hyperparameters for dynamics model architecture(up) and
training(down)



C.4. Computational Overhead of Proposed Policy

Inference time [s]
Diffusion Policy-C 0.70± 0.10

Flow Matching Policy 0.06± 0.10
Ours 0.34± 0.01

Table 4. Sampling time for the baselines (Diffusion Policy-C, Flow
Matching Policy) and ours.

When augmenting the policy with next-observation condi-
tioning, one natural concern is the additional computational
and training overhead. To quantify this, we measure: (1) in-
ference latency, the time required to sample an action condi-
tioned on the current observation, and (2) training overhead,
the total cost to learn the dynamics model

Table 4 shows that our method introduces a clear
inference-time overhead compared to the pure flow-matching
policy (0.34[sec] vs. 0.06[sec]), due to the incorporation of
a learned dynamics model. Nevertheless, it remains sub-
stantially faster than Diffusion Policy-C, reducing inference
time by more than 50% (0.34[sec] vs. 0.70[sec]). Given
that Diffusion Policy-C has already demonstrated real-time
performance in a variety of robotic manipulation tasks, our
lower latency strongly suggests that the proposed policy is
also suitable for real-world deployment—even in settings
that demand high control frequency.

Moreover, the offline training burden for the dynamics
model is minimal. We train it on rollouts from a random
policy—requiring no human supervision—and exploit the
efficiency of flow matching to achieve convergence in under
100 epochs on all Robomimic benchmarks. In practice, the
total compute added by dynamics learning is small relative
to the cost of the primary policy optimization, demonstrat-
ing that our method imposes only a modest overhead while
delivering substantial robustness gains.
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