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Abstract

Self-supervised representation learning in reinforcement learning embeds the states
or action sequences and improves the sample efficiency. Having a good represen-
tation helps the agent generalize from a small number of samples as the model
could estimate the value of its neighborhood well. However, those embedding
schemes do not consider the distortion between the manifold of raw data and the
underlying structure of state and action space. In this paper, we propose isometric
regularization for high-level actions which learns the latent space that preserves
the geometry of action space. In particular, we leverage Riemannian geometry
by applying several isometric regularization to the decoder or encoder model.
Our method shows a significant improvement upon recent embedding models on
Mujoco continuous control tasks from pixel inputs.

1 Introduction

Reinforcement Learning (RL) is to learn optimal control from interacting with an unknown envi-
ronment that has pre-defined rewards. Due to the curse-of-dimensionality arising from complex
high-dimensional state-action space, Deep Reinforcement Learning (DRL) has been developed with
the help of neural networks as a function approximator, which has a large representational capacity.
However, due to the inherent design of neural networks, large amounts of data are required and DRL
has lower sample efficiency as the agent additionally learns dynamics through interaction with the
environment. Therefore, in order to increase the sample efficiency, self-supervised representation
learning has been actively studied to learn the better representation of state-action space.

Instead of using pixel observations that are high-dimensional, the underlying structure of inputs or
dynamics can often be described as low-dimensional latent spaces, and using such good representa-
tions can increase sample efficiency, generalization, and robustness. While recent papers focused on
the model representation which embeds states and actions such that nearby embeddings have similar
distributions of the next states, we will investigate whether isometric embedding improves sample
efficiency on complex domains.

2 Preliminaries

2.1 Notation

We consider the Markov Decision Process (MDP) defined by the tuple (S,A, r, P, γ), where S states
the state space, A the action space, r : S ×A → R the reward function, P : S ×A× S → [0, 1] the
transition kernel, and γ the discount factor. We denote the transition of k−step action sequences as
st+k ∼ P (·|st, a1:k).
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Figure 1: Illustration of DynE architecture.

For a given smooth mapping f : M → N , x ∈ Rm 7→ y ∈ Rn, a Jacobian at point x is denoted by
the matrix J(x) =

(
∂fi

∂xj (x)
)
∈ Rn×m.

2.2 Dynamics-Aware Embeddings

We refer to the expression of [4], where encoders es and ea are distributions embedding a state and
action sequence into latent spaces zs ∈ Zs and za ∈ Za respectively. We parametrize each encoder
by ϕs and ϕa, and ρπ is the marginal distribution under a behavior policy π(s′|s, a1:k).
Then DynE objective is followed as:

L(ϕs, ϕa, θ) = Es,a1:k,s′∼ρπ

[
− logP (s′|zs, za; θ) (1)

+ αDKL

(
es(s;ϕs) || N (0, I)

)
+ βDKL

(
ea(a1:k;ϕa) || N (0, I)

)]
(2)

Inspired by the variational autoencoder structure, the first term is to predict s′ through the abstracted
state and high-level action and the second and third terms compress the raw state and action sequence
which can be interpreted in the informational bottleneck. The low dimensionality of the latent
representations prevents trivial identity mapping.

In practice, the dynamics P (s′|zs, za; θ) was designed by isotropic Normal distribution with mean
f(zs, za; θ) where the first term is derived into ||f(zs, za; θ) − s′||22. Each encoder es and ea
was replaced with diagonal Normal distribution N (µs, σ

2
s) and N (µa, σ

2
a). The behavior policy

π(s′|s, a1:k) is set as uniform distribution on raw action space for every timestep.

With a fully trained encoder denoting the freeze parameter as ϕa, the decoder da(ψa) is learned by

L(ψa) = Eza∼N (0,I)

[
||ea(da(za;ψa);ϕa)− za||22 + η||da(za;ψa)||22

]
(3)

In contrast to the conventional autoencoder structure, the reconstruction loss is formulated by high-
level action za. To avoid multiple outcomes, DynE gives the minimum-norm regularization which
leads trajectories being smooth and energy efficient. While η was reported as 10−2 in the original
paper, we found that actual implementation was done by 10−4. After the decoder is also fully trained,
the agent begins to learn the high-level policy based on the selection of learned high-level actions.
DynE extended TD3 algorithms[1] and DPG[2] to work against the high-level actions. Furthermore,
the additional input i is augmented to represent the length of the embedded action sequence. To train
the high-level policy µDynE, the reformulated Bellman equation of augmented critic function QDynE is
written as:

QDynE(es(st), za,t, i) =

k−i−1∑
j=0

γjrt+j + γk−iQDynE
(
es(st+k−i), µ

DynE(es(st+k−i)), i = 0
)

(4)

Then, for a data collecting policy π, the gradient of return Jπ with respect to the deterministic policy
µDynE can be estimated by
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∇ωJπ(µ
DynE
ω ) ≈ Es∼ρπ

[
∇ωµ

DynE
ω (es(s)),∇zaQ

DynE(es(s), z, 0)
∣∣∣
z=µDynE

ω (es(s))

]
(5)

3 Isometric Regularization for high-level actions

In our work, we investigate the effectiveness of isometric regularization on action embeddings.
Concretely, the objective of the encoder or decoder was regularized by Lisometry which forces
the map between raw action space and high-level action space to be isometry (i.e., preserving the
distance).

First, an action encoder ea(ϕa) is regularized such that compressing the action sequences to a
high-level action becomes isometry.

L(ϕs, ϕa, θ) = Es,a1:k,s′∼ρπ

[
− logP (s′|zs, za; θ) (6)

+ αDKL

(
es(s;ϕs) || N (0, I)

)
+ βDKL

(
ea(a1:k;ϕa) || N (0, I)

)
(7)

+νeLisometry(ea(a1:k;ϕa), H,G)
]

(8)

Also, an action decoder da(ψa) reconstructs raw action sequences from high-level action while
keeping the mapping to be isometric. For a pretrained encoder ea(ϕa), our learning objective is to
minimize

L(ψa) = Eza∼N (0,I)

[
||ea(da(za;ψa);ϕa)− za||22 + η||da(za;ψa)||22 (9)

+νdLisometry(da(za;ψa), H,G)
]

(10)

In order to minimize the distortion of the manifold, we choose Lisometry among 3 different candidates
for isometric regularization, iso, iso-log, and iso-harmonic

Liso(f(x), H,G) =
∑
i

(λiJTH(f(x))JG−1 − 1)2 (11)

Liso−log(f(x), H,G) =
∑
i

log2(λiJTH(f(x))JG−1) (12)

Liso−harmonic(f(x), H,G) = Tr(JTH(f(x))JG−1) (13)

where λiJTH(f(x))JG−1 is the i−th eigenvalues of JTH(f(x))JG−1. Each term induces
JTH(f(x))JG−1 to be an identity matrix by forcing its eigenvalues to be all one. In our experiment,
we set both Riemannian metrics H and G as identity matrix I .

hyperparameter Value
discount factor γ 0.99

batch size 100
learning rate 1e-4

KL loss gain α, β 1e-4
norm loss gain η 1e-4

iso-action encoder loss gain νe 1e-3
iso-action decoder loss gain νd 1e-4

trajectory length 4
encoding training step 50
decoding training step 10

optimizer Adam
Table 1: Hyperparameter used in the experiments
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4 Experiments

We conduct experiments on ReacherVertical-v2, ReacherTurn-v2 environment referred to [3]

Figure 2: ReacherVertical-v2

Figure 2 shows how the ReacherVertical-v2 environment works. The goal is to make the orange-
colored end effector located at the end of the arm manipulator reach the red ball. Due to the
environmental simplicity, training time was 2-3 hours.

Figure 3: ReacherTurn-v2

Figure 3 shows how the ReacherTurn-v2 environment works. The goal of the task is to make the
orange ball of a rigid body which is fixed by the blue axis (located at the lower right of the image)
reach the red ball by touching or pushing by arm manipulator. While the dynamic is more complicated
than the previous task, the training time was at least 10 hours.

We experiment on the baseline algorithm TD3 and use the three regularizers mentioned above. For
each variant, we named iso-TD3, iso-log-TD3, iso-harmonic-TD3. iso-TD3. All of the hyperparame-
ters we used are reported in Table 1. The performance of each line is average in 3 seeds.
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4.1 Results

To show the effect of isometric regularizer for high-level actions clearly, we only use action encoder
ea and action decoder da and remove state encoder es

Figure 4: Performance of three different isometric variants (iso, iso-harmonic, iso-log) of DynE-TD3
by adding regularization on decoder. Each line is the average of 3 random seeds.

In Figure 4, iso and iso-log-TD3 shows faster learning behavior than DynE-TD3 and TD3.

Figure 5: Performance of two different isometric variants (iso, iso-enc) of DynE-TD3. iso-enc
additionally regularizes the encoder with the same term. Each line is the average of 3 random seeds.

In Figure 5, iso and iso-enc shows faster learning than DynE-TD3 and TD3. But iso and iso-enc seem
no different in this experiment.

5 Conclusion

In this work, we present the isometric regularization for high-level actions while embedding the
dynamic. The effectiveness of isometry regularization in action decoder shows clearly better perfor-
mance in ReacherVertical, which is a less complex environment than ReacherTurn. For future work,
we need to further tune the hyperparameter νe, νd for a fair evaluation of our work and investigate the
effect of embedding from the more complex environment, such as hopper, halfcheetah of MuJoCo,
and real robot manipulator.
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