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Abstract

In robotic manipulation tasks, visuomotor control suffers
from limited spatial understanding problems with limited
camera installation and visual imperfections, such as oc-
clusion. In this paper, we propose view-imagination, a novel
framework with incorporating viewpoint policy. We train a
dynamic scene NeRF and a learnable viewpoint policy, en-
abling the robot to generate a maximum value viewpoint to
improve affordance. In experiments, we demonstrate that
view-imagination outperforms across various training con-
figurations.

1. Introduction

Manipulation with visual observation, especially image-
based deep reinforcement learning (RL) and imitation learn-
ing have yielded significant advances in robot learning
[4, 7, 13]. A robot learning agent should understand spatial
space from image observation to solve manipulation tasks.
Previous works [9, 12, 27] using single-view image obser-
vation for RL agents suffer from the lack of enough spatial
information for the environment due to the absence of di-
verse viewpoint image observations. To solve the lack of
spatial information, multi-view RL methods for robot learn-
ing [5, 15, 22, 25] have been proposed to provide an agent
with the input observation from various viewpoints.

However, existing studies have attempted to use obser-
vations from a fixed set of multiple viewpoints or 3D-aware
latent vectors without fully understanding the differences
between viewpoints. Given the benefits of 3D awareness,
we hypothesize that the most beneficial viewpoint is scene-
dependent and can resolve visual ambiguities such as occlu-
sions.

In this paper, we propose view-imagination, a frame-
work that leverages valuable novel viewpoint, considering
the unique information of each viewpoint. Our method
generates synthetic adaptive viewpoints based on current
scene state using learned viewpoint policy, and exploits
them when solving manipulation tasks.

*Corresponding author, 1Seoul National University

Key Insight: Traditional multi-view approaches use
fixed cameras that cannot adapt to changing occlusions or
task phases. For example, during door opening, the optimal
viewpoint shifts as the robot moves and the door handle be-
comes visible from different angles. Our adaptive approach
dynamically selects the most informative viewpoint for each
scene state, leading to more robust visuomotor control.

To summarize, the main contributions are as follows. (1)
While previous works use fixed multi-view setups, we pro-
pose the first approach to dynamically select viewpoints
based on current task state and predicted value, enabling
better spatial understanding. (2) To generate a more gainful
viewpoint, we propose value learning to train a viewpoint
policy to select a viewpoint with maximum value using the
critic model.

Note that while our current implementation uses NeRF
trained on multi-view data, this represents a proof-of-
concept that can be replaced with few-shot or zero-shot
novel view synthesis methods [8, 21], eliminating the need
for multi-view data collection entirely.

2. View-Imagination
In this section, we propose view-imagination for robotic
manipulation tasks. To clarify our novelty which focuses
on viewpoint, we evaluate the performance of baseline on
robosuite Lift [30] task for the viewpoint of front,
side, and bird in Figure 1, which demonstrates performance
difference across different viewpoint settings. In the fol-
lowing sections, we utilize and denote DreamerV1 [9] as
a baseline algorithm for convenience. The key insight is
that different viewpoints provide different amounts of task-
relevant information. For instance, when grasping a door
handle, a side view may be more informative than a front
view depending on the robot’s current position. We formal-
ize this by defining the value of a viewpoint as the expected
return when using that viewpoint’s observation.

To leverage difference between viewpoints, view-
imagination operates in two phases: (1) NeRF Training:
We first collect multi-view data and train a dynamic scene
NeRF fθ that can synthesize novel views from arbitrary
camera poses. While our current proof-of-concept requires
multi-view training data, our framework is readily exten-
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Figure 1. All plot has iteration as x-axis and average test return as y-axis. Left: Performance of baseline with front view, side view, and
bird view observation for Lift task. Middle: Performance of single-view baseline (front), multi-view baseline (front,side), vi-learn-22, and
vi-learn-3 (front,adaptive) Right: Performance of vi-learn-22, vi-learn-3, vi-random-22, and vi-random-3.

sible to zero-shot novel view synthesis models that elimi-
nate this requirement entirely, making deployment signif-
icantly more practical. (2) Viewpoint Policy Learning:
We then train a viewpoint policy πω that selects most ben-
eficial viewpoints based on current scene state. For clar-
ity, view represents an observation obtained from a certain
viewpoint, and viewpoint means a certain camera pose. De-
tailed explanations are given in Appendix D.

Algorithm 1 View Imagination

Initialize viewpoint policy ω, RSSM θ, policy ϕ, critic ψ,
replay buffer D
for l = 1, . . . ,M do

for c = 1, . . . , C do
B = {(ot, õt(v), at, rt, dt)}t=k+Lt=k ∼ D
// dynamics learning
Update θ by minimizing Lwm(θ) using B
// behavior learning
Dreaming τ = {(ŝi, âi, r̂i)}Hi=1

Update ϕ, ψ by Lactor(ϕ),Lcritic(ψ) using τ
// value learning
for i = 1, . . . , N do

Compute target yv using Vψ(s
vit
t )

Update ω by minimizing Lvi(ω)

// env interaction
for t = 1, . . . , T do

Synthesize v ∼ πω(·|st), õt(v) = NeRF(ot, v)
Sample action at ∼ πϕ(·|ot, õt(v))
D ← D ∪ {ot, õt(v), at, rt, dt}

3. Experimental Results
We first train a dynamic scene NeRF model using data col-
lected from random policy, as shown in Figure 2 in Ap-
pendix. After training the NeRF model, the viewpoint pol-
icy is optimized through value learning in conjunction with

a baseline algorithm as described in Algorithm 1. The test
return curve in Figure 1 compares the baseline with view-
imagination combined with value learning across 22 view-
points, referred to as vi-learn-22. Note that our algorithm
receives only a single-view image from the environment and
generates an additional adaptive view, while the baseline re-
ceives multi-view observations from the environment.

Our results show that vi-learn-22 achieves superior per-
formance, outperforming both single-view baseline (2.2×
improvement) and fixed multi-view approaches (1.4x im-
provement). Importantly, value learning is crucial for this
performance gain: while random viewpoint selection (vi-
random-22) outperforms single-view baselines, it falls short
of fixed multi-view methods. This demonstrates that adap-
tive viewpoint selection requires value-driven decisions
rather than random sampling to surpass carefully positioned
fixed cameras.

In the context of affordance, we visualize the saliency
map of both the baseline and view-imagination with value
learning using 3 viewpoints (vi-learn-3) from the front view
in Figure 2 to investigate how view-imagination aids in
identifying informative objects. Qualitatively, the saliency
map of vi-learn-3 tends to focus on both the manipulator
and the door, whereas the baseline only concentrates on the
manipulator. This suggests that adding an additional, even
synthesized, adaptive view enhances the agent’s affordance.

Ablation Study: Figure 1 presents comprehensive ab-
lation results. Comparing vi-learn-22 and vi-random-22
demonstrates the importance of value-based selection over
random sampling. The comparison between vi-learn-22 and
vi-learn-3 shows that having more viewpoint candidates al-
lows better selection, even though some may be suboptimal.

To sum up, view-imagination demonstrates significant
performance improvements over the baseline, even with
the various training configurations. The performance gain
can be explained by the enhanced affordance of the view-
imagination agent, as shown in the saliency map.
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Appendix

A. Related Work
Our work is related to three areas: image-based RL for
manipulation, Neural Radiance Fields (NeRF) for dynamic
scenes, and novel view synthesis for robot learning. Image-
based RL for manipulation uses image observations as in-
put and understands the environment from given images or
learned latent representations. DreamerV1 [9] proposed a
method that learns an actor-critic model by dreaming in
the learned latent space for single-view image observation.
However, this approach lacks consideration of multiple im-
age observations. MV-MWM [22] and Multi-View Dream-
ing [15] enhanced DreamerV2 [10] by using multi-view
representation learning. Multi-view approaches use fixed
camera configurations that cannot adapt to dynamic scene
changes or task-specific requirements. In contrast, our ap-
proach dynamically selects viewpoints based on current
state, providing better coverage of task-relevant regions.

NeRF [18] represents 3D scenes using volumetric ren-
dering. Since NeRF is only suitable for static scenes, prior
works have attempted to adopt NeRF for dynamic scenes.
NeRF-dy [17] first proposed an encoder-decoder framework
that handles dynamics modeling. NeRF-RL [6] and SNeRL
[24] learn policies using the representation from a encoder.
However, the representation used is only 3D-aware, and
does not consider the most beneficial viewpoints.

SPARTN [29] and Rovi-Aug [3] introduced an algorithm
that generates images from new viewpoints using NeRF
and ZeroNVS [21]. Both algorithms are data augmenta-
tion techniques for visual control, whereas our algorithm
exploits the viewpoint itself. Next-best-view algorithms
[2, 28] are designed to alleviate occlusions by anticipat-
ing the best viewpoint. However, these works have primar-
ily focused on relocating the egocentric camera viewpoints,
rather than the remote camera system or synthesizing addi-
tional view.

B. Background
Neural Radiance Fields for Dynamic Scenes. To rep-
resent a 3D scene for novel view synthesis, NeRF shows
significant improvement compared to prior works. NeRF
represents a 3D scene by modeling volumetric fields us-
ing neural network. Specifically, given 3D world coor-
dinate x and unit direction vector d, fθ estimates RGB
color c and volume density σ: fθ(x,d) = (c, σ). From
volumetric rendering, pixel rendering is given as C(r) =∫ tf
tn
T (t)σ(r(t))c(r(t),d) where r(t) = o + td is camera

ray with camera origin o, and T (t) = exp(−
∫ t
tn
σ(s)ds).

Since original NeRF architecture can represent only static
scene, Driess et al. [6], Li et al. [17], Shim et al. [24]
used the encoder-decoder architecture to represent dynamic

scene for NeRF. Formally, encoder Ω embeds observa-
tion o1:V and corresponding camera matrix K1:V by z =
Ω(o1:V ,K1:V ). For the decoder, we implement a latent-
conditioned NeRF model for the volumetric rendering of
dynamic scene: fθ(z,x,d) = (c, σ).

Dreamer. Dreamer is an effective world model method
for robot learning as shown in [20, 22, 23, 26]. Hafner et al.
[9] introduces DreamerV1, with the concept of dreaming
which trains agents using a learnable latent dynamics model
without interaction with the environment. DreamerV1 con-
sists of a recurrent state space model (RSSM) to model la-
tent space dynamics, the encoder-decoder network for im-
age observation, and the actor-critic model which is trained
by dreaming with a given latent dynamics model.

C. Algorithmic Details
For a set of observations O = {o0, o1, ...}, oi ∈ R3×H×W ,
the most beneficial observation is defined by the one with
the largest expected return from selecting that observation.
We propose the value learning algorithm to train view-
point policy for generating adaptive viewpoint. Value learn-
ing enforces viewpoint policy to generate a viewpoint that
has maximum value computed by the critic model. For-
mally, we defined viewpoint policy as v ∼ πω(v|st) where
v ∈ SE(3). Given a set of viewpoints V and critic model
Vψ(st) for state st, loss function is formulated by cross-
entropy of viewpoint policy πω relative to a target vector yv

which represents a maximum value viewpoint v:

Lvi(ω) = −
∑
vi∈V

yvi log(πω(vi|st))

v∗ = argmax
vi∈V

Vψ(st(ot, õt(vi)))

D. Implementation Details
We implement the baseline with a multi-view encoder to
cover both environmental observation and synthesized ob-
servation from our model. To distinguish whether each ob-
servation is given from the environment or synthesized by
the NeRF model, we denoted environmental observation as
ot and synthesized observation from viewpoint v as õt(v).
Following the notation of baseline, we denote the parame-
ters of RSSM, reward predictor, and encoder-decoder model
as θ, actor model as ϕ, and critic model as ψ.

In our experiments, using DreamerV1 with a multi-view
encoder as the baseline, we implemented view-imagination
with varying numbers of viewpoints, without value learning
methods, and different environmental observations. We also
visualized saliency maps for qualitative affordance evalua-
tion. The algorithms were evaluated in the robosuite
Door environment, with operational space as the action



Figure 2. Left: Two sequences of view with four different viewpoints of the ground-truth observations (top) and the imagined results
(bottom), respectively. Right: Two saliency maps over policy, the baseline and our view-imagination. We note that view-imagination
focuses better on two important objects, door and robot arm.

space. The Door environment, a complex long-horizon
robotic manipulation task, requires the agent to grasp and
manipulate a handle of a randomly located door to open it.
To successfully complete this task, the agent must infer af-
fordances from visual inputs, even when the door handle
is partially occluded from certain viewpoints. We selected
the Door environment to demonstrate the effectiveness of
the view-imagination framework in scenarios with imper-
fect visual observations, such as occlusion.

E. Limitation and Future Work

While view-imagination demonstrates significant perfor-
mance improvements, our current implementation has two
key limitations: multi-view data requirement and compu-
tational overhead. The NeRF training phase requires col-
lecting multi-view observations, which can be impractical
for real-world deployment. Additionally, NeRF rendering
during inference introduces latency that may limit real-time
applications.

Future work will address these limitations along two di-
rections: (1) Reducing data requirements by integrating
few-shot or zero-shot novel view synthesis methods such
as CAT3D [8] and ZeroNVS [21], eliminating the need for
multi-view training data entirely. (2) Improving compu-
tational efficiency by adopting faster rendering algorithms
including Instant NGP [19], Tri-MipRF [11], and 3D Gaus-
sian Splatting [14]. These advances will enable practical
deployment of view-imagination in real-world robotic sys-
tems where camera setup flexibility and real-time perfor-
mance are crucial.

Additionally, following benefits of randomness in RL [1,
16], viewpoint policy trained viewpoint based on not only
how valuable but also how independent view are. Also,
our framework can be applied to various robot learning al-
gorithms beyond DreamerV1, including imitation learning
methods and Vision-Language-Action models. For algo-
rithms that do not inherently use value functions (e.g., be-
havior cloning), alternative metrics such as action predic-

tion confidence or attention maps can guide viewpoint se-
lection.
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